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A numerical investigation of steady states, their stability, onset of oscillatory 
instability, and slightly supercritical unsteady regimes of an axisymmetric swirling flow 
of a Newtonian incompressible fluid in a closed circular cylinder with a rotating lid is 
presented for aspect ratio (height/radius) 1 ,< y < 3.5. Various criteria for the 
appearance of vortex breakdown are discussed. It is shown that vortex breakdown takes 
place in this system not as a result of instability but as a continuous evolution of the 
stationary meridional flow with increasing Reynolds number. The dependence of the 
critical Reynolds number Recr and frequency of oscillations o,, on the aspect ratio of 
the cylinder y is obtained. It is found that the neutral curve Re,,(y) and the curve w,,(y) 
consist of three successive continuous segments corresponding to different modes of 
the dominant perturbation. The calculated critical parameters are in good agreement 
with the available experimental and numerical data for y < 3. It is shown that the onset 
of the oscillatory instability does not depend on the existence of a separation bubble 
in the subcritical steady state. By means of a weakly nonlinear analysis it is shown that 
the axisymmetric oscillatory instability sets in as a result of a supercritical Hopf 
bifurcation for each segment of the neutral curve. A weakly nonlinear asymptotic 
approximation of slightly supercritical flows is carried out. The results of the weakly 
nonlinear analysis are verified by direct numerical solution of the unsteady 
Navier-Stokes equation using the finite volume method. The analysis of the 
supercritical flow field for aspect ratio less than 1.75, for which no steady vortex 
breakdown is found, shows the existence of an oscillatory vortex breakdown which 
develops as a result of the oscillatory instability. 

1. Introduction 
Vortex breakdown in a closed circular cylinder with a rotating lid was discovered 

experimentally by Vogel (1975) and since that time it has been a subject of intensive 
experimental and theoretical investigation. The phenomenon takes place as a sudden 
appearance of one or more separation vortex bubbles at the axis of the cylinder with 
stagnation points upstream and downstream of the bubble. Later an analogous 
phenomenon was found in the polar region between concentric rotating spheres (Bar- 
Yoseph, Roesner & Solan 1992; Arkadyev et al. 1993; Bar-Yoseph 1994; Bar-Yoseph 
& Kryzhanovski 1995). The importance of the vortex breakdown of swirling flows for 
many applications (see reviews by Escudier 1988, Hopfinger & Linden 1990, and 
Delery 1994) led to wide interest in this particular problem, which can be investigated 
relatively easily both experimentally and numerically. 

A parametric study of the appearance and disappearance of the separation bubbles 
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in this system was done experimentally by Escudier (1984), who presented the 
corresponding flow-regime diagram in coordinates of the two control parameters - the 
Reynolds number and the aspect ratio (height/radius) of the cylinder. An important 
conclusion of the experimental investigation was that the flow remains axisymmetric at 
least until the onset of the oscillatory instability. The resulting oscillatory flows 
observed in the experiment for cylinders with aspect ratio less than three also remained 
axisymmetric. In cases of larger aspect ratios a spiral motion of the separation bubble 
around the axis was detected. However, streaklines observed in experiments may spiral 
even in cases of completely axisymmetric flow (Neitzel 1988). Hence one cannot be sure 
that a spiralling streakline observed in an experiment really corresponds to a break of 
axisymmetr y . 

Escudier (1984) used the term ‘stability boundaries’ both for the boundaries of 
parametric regions where flows with one, two, or three separation bubbles were 
observed and for the boundary dividing steady and unsteady states of the flow. 
However, in later works (Lugt & Abboud 1987; Tsitverblit 1993) devoted to the 
numerical analysis of the problem the instability nature of the vortex breakdown in this 
system was questioned. None of the numerical investigations (Daube & Sarrensen 1989; 
Sarrensen & Daube 1989; Lopez 1990; Brown & Lopez 1990; Lopez & Perry 1992; 
Daube 1992; Tsitverblit 1993) reported any bifurcational transitions between different 
steady states of the flow. The numerically calculated steady flows with and without 
vortex breakdown, as well as the calculated transitions from steady to oscillatory states 
(Lugt & Abboud 1987; Daube & Sarrensen 1989; Lopez 1990; Daube 1992; Tsitverblit 
1993, Tsitverblit & Kit 1994; Gelfgat, Bar-Yoseph & Solan 1995), are in good 
agreement with the experimental results (Vogel 1975; Escudier 1984; Roesner 1990). 

The only attempt to use linear stability theory for the analysis of a possible 
instability that could lead to vortex breakdown in the disk-cylinder system was done 
by Tsitverblit (1993) who showed that the problem linearized in the vicinity of a 
stationary solution has no single-zero eigenvalues. This means that there is no 
monotonic instability corresponding to a transition from one steady state to another. 
On the basis of a series of numerical experiments, Tsitverblit drew some additional 
qualitative conclusions about the non-existence of other hypothetic instability 
phenomena leading to vortex breakdown. This analysis did not eliminate possible 
instabilities corresponding to complex or multiple-zero eigenvalues of the linearized 
problem. Hence, the connection between flow instability and vortex breakdown is open 
to further study. 

The main objective of the present work is the numerical analysis of the linear 
stability of the swirling flow in a cylinder with a rotating lid. The spectrum of the 
problem, linearized in the vicinity of a stationary solution, is investigated for fixed 
values of the aspect ratio and continuously increasing Reynolds number. The most 
unstable modes are described by the eigenfunctions corresponding to the dominant 
eigenvalue with zero real part. It is shown that the vortex breakdown, as well as 
transitions from one to two (or more) separation bubbles, do not take place because 
of an instability, and all the steady states observed in the system belong to one single 
branch of the stationary solution. On the basis of the results obtained we discuss the 
definition for the vortex breakdown in this particular case. It is shown that the vortex 
breakdown may be associated not only with the appearance and disappearance of a 
separation vortex bubble, but also with the concave shape of the streamlines near the 
axis of rotation. Since vortex breakdown cannot be interpreted as an instability of the 
flow, we propose an heuristic explanation of the appearance of the separation vortex 
bubble. 
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The numerical investigation of the onset of oscillatory instability shows that the 
transition from the steady to the oscillatory state of the flow takes place as a result of 
a Hopf bifurcation and yields the dependence of the critical Reynolds number Reer and 
the critical frequency of oscillations w,, on the aspect ratio y of the cylinder. It is found 
that the neutral curve Re,,(y) and the curve o,,(y) consist of three successive 
continuous segments corresponding to different modes of dominant perturbation. It is 
shown that the onset of the oscillatory instability is not connected with the vortex 
breakdown. For the aspect ratio changing from one to three the values of the critical 
Reynolds number obtained are in good agreement with published experimental and 
numerical results. For larger aspect ratios the calculated critical Reynolds numbers are 
larger than the values obtained experimentally (Escudier 1984). 

A weakly nonlinear analysis of the branching periodic solutions showed that the 
numerically obtained axisymmetric Hopf bifurcation is supercritical for all values of 
the aspect ratio which were considered. This leads to the conclusion that for aspect 
ratio larger than three the experimentally observed threshold from steady to oscillatory 
flow is connected with an asymmetric instability of the flow. Moreover, it has been 
shown that an oscillatory vortex bubble exists in the case of aspect ratio less than 1.75, 
for which the steady flow does not contain a separation bubble. 

The asymptotic approximation of slightly supercritical oscillatory flows was verified 
by the numerical solution of the time-dependent Navier-Stokes equation using the 
finite volume method. 

2. Formulation of the problem 
The axisymmetric flow of an incompressible Newtonian fluid with kinematic 

viscosity v* in a cylinder of radius R* and height H",  with a lid rotating with angular 
velocity Q* at z* = H* is considered. The flow is described by the momentum and 
continuity equations in a cylindrical system of coordinates ( r ,  cp, 2) .  Using the scales R*, 
R*2/u*, Q* R* and p*(Q*R*)' for length, time, velocity and pressure respectively, the 
dimensionless equations are 

-+v av, r + v  av 2-2??=--+- av 0 2  ap 1 (a2v L + - L + - . - - L  1 av a2v  v )  
at ar az r ar Re ar2 r ar az2 r2 ' 

The boundary conditions of an axisymmetric flow are imposed at the axis of the 
cylinder (0 < z < y, r = 0) 

( 3 )  v = v  =A=() 
, p a r '  

and the no-slip and no-penetration conditions are imposed on the rigid boundaries: 
on the cylindrical wall (0 < z < y, r = 1) and the stationary bottom of the cylinder 
(0 < r < l , z  = 0 )  

(4) 

av 

v, = v, = v, = 0, 
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and on the rotating lid of the cylinder (0 6 r < 1, z = y )  
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v, = v, = 0, v P = r .  (5) 

Here Re = Q*R2/v* is the Reynolds number and y = H * / R *  is the aspect ratio of the 
cylinder. 

3. Numerical procedures 
3.1. Spectral Galerkin method 

The problem (1)-(5) was solved using the spectral Galerkin method with the basis 
functions defined by Gelfgat & Tanasawa (1993, 1994). The meridional velocity vector 
u = (ur ,  v , ) ~  and the azimuthal velocity component vv are approximated by the 
truncated series 

" N z  M ,  M* 

(6) 

Here cij(t)  and dij(t)  are time-dependent coefficients to be found, N,, N,, M,, M ,  are 
numbers of basis functions used for the approximation of the unknown functions in the 
radial and axial directions; uij(r, z )  and wij(r, z )  are vector and scalar basis functions 
defined as 

t m=o m=o 

W i j ( h  z )  = r K ( 4  +Pi ?+1(r)) ( q z l Y )  + 41j 7;+1(ZlY) + q2j q+z(zlY>); (8) 

T, and U ,  are the Chebyshev polynomials of the first and second type respectively 

(9) 
sin [(n + 1) arccos (2x - l)] . 

sin [arccos (2x - l)] ' T,(x) = cos [n arccos (2x- l)], U,(x) = 

and iJn(r) = ~ , + ~ ( r )  + (n  + 1) r ~ , ( r ) .  (10) 

Because of the relation between the Chebyshev polynomials (dldx) Tn+l(x) = 

2(n + 1) U,(x) the basis functions (7) are divergence-free and the approximation of the 
velocity (6) is analytically divergence-free for any number of Galerkin modes. 

The function SZ(r, z )  is defined as the solution of the Stokes problem AvT = 0 with the 
corresponding boundary conditions (3-5) for vp. Since the function Q(r, z )  satisfies the 
inhomogeneous boundary conditions (5), all the boundary conditions for the basis 
functions wij are homogeneous. 

Substitution of (+(lo) in the boundary conditions (3)-(5) defines a system of linear 
equations for the coefficients a,,, bj,, p i ,  q l j  and qZj. Once these coefficients are 
determined (with the help of symbolic computations), the approximations (6) satisfy all 
boundary conditions and the continuity equation analytically. 

The function Q(r, z )  is defined as the solution of the problem in the Stokes limit and 
is approximated by the truncated series 

K ,  K z  

i-0 j-0 
Q ( y ,  4 = r c c Q,j(T(r) +Ji &+1(r)) ( q z l Y )  + gj 73+1(Z/Y)), (1 1) 
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where the coefficients p", and 4, are defined to satisfy the boundary conditions (4), (5) 
for vp. The (K,. + 1) K, equations for the coefficients SZij are obtained using the Galerkin 
method for the equation ASZ = 0. The other K,. equations for Q,, are defined by 
applying the collocation method at the iu, Chebyshev nodes along the boundary 
z = y ,  0 6 r 6 1. Since the problem for SZ(r,:) is stationary and depends only on the 
aspect ratio of the cylinder, it was calculated once for each value of y and was then 
treated as a known function. 

The stream function yk of the meridional flow is defined by 

l a +  2) =---. 1 a7Cr 2) =-- 
' r a z '  r a r  

Using (6), (7) an approximation of 7Cr may be written as 

where 
4 4 L  

Once the Galerkin method with the basis functions (7), (8) is applied, the problem 
(1)-(5) is reduced to a system of ordinary differential equations (ODES) for the time- 
dependent coefficients ci j ( t )  and d,,(t) that can be written in the following form (the 
summation convention on repeated indices is assumed) : 

x.=---"- . ' dX.(t) dt - c ( X ( t ) ;  Re) = LijX,(t)+N,,l,X,(t)x,(t)+Q,. (14) 

Here i , j ,  k = l,(M,+l)(M,+l)+(N,+l)(N,+l) and 

The matrices L,,, Nijk, Q, contain coefficients of all the linear, bilinear and free terms 
of the equations, respectively. 

3.2. Linear stability analysis 
The completely explicit form of the system (14) allows us to use standard numerical 
methods developed for an ODE system both for obtaining stationary and non- 
stationary solutions and for the investigation of the stability of solutions. Thus, a 
stationary solution X o  of the system (14) is unstable if the Jacobian matrix calculated 
at X =  X o  

has at least one eigenvalue h = h'+ihi with positive real part A' > 0. Thus, the 
investigation of stability for a given aspect ratio requires the determining of a value of 
Re such that the real part of the dominant eigenvalue (eigenvalue with the maximal real 
part) il = il' + iAi is zero : A' = 0. 

If for some value of Re the dominant eigenvalue has zero real part A' = 0 and 
aA'/c?Re =!= 0, then Ai =!= 0 means a bifurcation to a periodic solution, called a Hopf 



6 A .  Yu. Gelfgat, P. 2. Bar-Yoseph and A .  Solan 

bifurcation, and Ai = 0 corresponds to a bifurcation from one stationary solution to 
another (Hopf 1942; Hassard, Kazarinoff & Wan 1981). In the case Ai + O  the 
imaginary part Ai of the dominant eigenvalue gives an estimate of the circular 
frequency of the oscillatory solution branching from the steady state after the onset of 
the oscillatory instability. 

The eigenvector V corresponding to the dominant eigenvalue A with A'= 0 
(Jmk & = A V, = iAi V,) defines the most unstable perturbation of the system (14). The 
most unstable perturbation of the flow may be calculated using the series (6) with 
coefficients ci j  and dij defined as components of the eigenvector V from (15). In the 
same way the limit cycle of the dynamical system (14), which develops as a result of the 
Hopf bifurcation, defines an approximation of the periodic solution of the problem 
( 1 )-(5). 

3.3 .  Approximation of slightly supercritical flows 
As was mentioned, the transition from the stationary solution X o  to a limit cycle takes 
place at a critical Reynolds number Recr when there exists an eigenvalue A = A' + iAi 
such that A' = 0, aA'/aRe + 0, Ai = wo =k 0 and all other eigenvalues have negative 
real parts. Then there exists a small positive number c > 0, such that the asymptotic 
approximation of the limit cycle in the vicinity of Recr is defined by two parameters 7 

and ,u as (Hassard et al. 1981) 

(174  Re = Recr +pus2 + O(e4), 

2n 
w0 

T(Re) = - [ 1 + 7 2  + O(e4)], 

X(t;Re) = XO(Re,,)+eRe Vexp -t +O(e2). (17c) L r31 
Here (Re-Re,,) is the supercriticality, T is the period of oscillations, and X is the 
asymptotic solution of the ODE system (14) for the Reynolds number defined in (17a). 
It should be noticed that the parameter ,u defines the direction of bifurcation: the 
bifurcation is supercritical if ,u > 0, and subcritical if ,u < 0. 

The algorithm for the numerical calculation of the coefficients 7 and ,u is described 
by Hassard et al. (1981). These coefficients are defined as 

where 

- C 2 U T F [ X 0 + R e ( V ~ + ~ z o ~ 2 + ~ 1 1  <5;>; ~~, , l}lc=o.  (22) 
a 3  

Gz1= mag 
In (19)-(22) F(X;  Re) is the right-hand side of the ODE system (14), 6 = x+iy is a 
complex number, an overbar denotes complex conjugate, and U and V are respectively 



Stability of confined swirling f low 7 

the left and right eigenvectors of the Jacobian matrix J defined in (16). The vectors w,, 
and w,, are solutions of the following systems of linear algebraic equations 

Jw, ,  = -h,,, [J-2iwo/] w20 = -h,,, (23) 

where hij = [/- 2 Re (VU')]& and / is the identity matrix. 

Floquet exponent p which may be approximated as (Hassard et af. 1981) 
The stability of the branching limit cycle is determined by the largest non-zero 

Q = p.2 + 0(€4) ,  p = - 2urp .  (24) 

The limit cycle is stable if Q < 0 and unstable if Q > 0. In the problem considered the 
Hopf bifurcation takes place when the Reynolds number exceeds a critical value. This 
means that ur is always positive (Ar  grows with growing Re). Then, as follows from 
(24), the supercritical Hopf bifurcations lead to stable limit cycles ( p  > 0 * q5 < 0), 
while limit cycles corresponding to the subcritical bifurcations are unstable 

For the dynamical system (14) the expressions (21) and (22) may be evaluated 
( p  < 0 =+ Q > 0). 

analytically, giving 

The numerical process was organized in the following way: first, for an initial value 
of the Reynolds number Reo a stationary solution of the ODE system (14) was 
calculated with the Newton method; second, eigenvalues of the Jacobian matrix (16) 
were calculated with the QR decomposition algorithm. These two steps were repeated 
for the next value of the Reynolds number, usually chosen as 1.OlReO. Then the real 
part A' of the dominant eigenvalue was considered as a function of the Reynolds 
number, and the value of the critical Reynolds number Reer corresponding to 
A'(Reer) = 0 was found with the secant method. When the value of Recr is found, 
the linear stability analysis is completed. The last step is the application of the 
algorithm (18)-(25) which requires the calculation of the derivative dA/dRe at 
Re = Recr and the right and left eigenvectors of the Jacobi matrix. At this step the 
values of the dominant eigenvalue and the eigenvectors were calculated with the 
inverse iteration algorithm. 

3.4. VerlJcation of the method 
Test calculations were carried out to check the convergence of stationary solutions, of 
the critical values, and of the characteristics of slightly supercritical flows. Stationary 
solutions, critical values and asymptotically approximated slightly supercritical flows 
calculated by the Galerkin method were compared with results obtained by 
independent calculations in other studies (see figure 12b) and by the direct numerical 
solution of the time-dependent Navier-Stokes equation (see 54.4 and the Appendix). 

To validate the asymptotic approximation of the slightly supercritical flows, the 
asymptotic expansions (1 7) were substituted in the non-stationary equations and 
residuals, averaged over the period of oscillations, were calculated. The test calculations 
were carried out for y = 1.5, 2.5 and 3.25. Details of the test calculations are presented 
in the Appendix. 
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FIGURE 1. Meridional flow streamlines, y = 3.25, Re = 2752. Comparison of numerical results with 
the experimental photograph of Escudier (1984). (a) Calculation with the Galerkin method using 
34 x 34 basis functions. (b) Calculation with the finite volume method using the 100 x 100 stretched 
grid. (c) Calculation with the finite volume method using the 200 x 200 stretched grid. 

A comparison for the case y = 3.25, Re = 2752 is shown in figure 1. In this case three 
vortex bubbles were observed in the experiment of Escudier (1984). As seen from figure 
1 the experimental result is well reproduced with 34 x 34 functions (figure 1 a), as well 
as with a 200 x 200 stretched finite volume grid (figure 1 c). At the same time the upper 
recirculation region is resolved inaccurately with a 100 x 100 grid (figure 1 b). 

To verify the asymptotic approximation of the limit cycle expressions (17) were 
substituted in the non-stationary ODE system (14) and a residual Res averaged over 
a period of oscillations was estimated as 

Res = -- ; ;loT I/k(l)--F(X(t); Re)II dt, (26)  

where T is the period of oscillations, N is the total number of degrees of freedom in 
(14), and I I ' I I  stands for Euclidean norm. Note that in view of the asymptotic 
expansion (17) and the algorithm (1 8)-(25) the leading term of Res should be of order 
e2. The dependence of Res on 2 is shown in figure 2 for the case y = 1.5. It indicates 
that Res remains proportional to 2 for 2 < lop3. This gives an upper estimate 
(Re-  Re,,) < ,u for the interval of the Reynolds numbers where the expansion 
(17c) may be used. Note that this estimate shows for which Reynolds numbers the 
expansion (17) gives a correct asymptotic approximation of the limit cycle of the 
dynamic system (14). On the other hand, this estimate does not guarantee the stability 
of the limit cycle, and its convergence to the limit cycle of the hydrodynamic problem 
considered. The latter may be checked by comparison of the asymptotic approxi- 
mations with the results of direct numerical simulation ($4.4). 
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FIGURE 2. The averaged residual of ( a )  meridional flow Res(v,, u,) and (b) azimuthal velocity Res(uT) 
versus 2: A, calculation with 16 x 16 functions; 0, calculation with 20 x 20 functions; 0, 
calculation with 24 x 24 functions. 

4. Main results 
An example of the vortex breakdown in a cylinder with aspect ratio y = 1.5 is 

illustrated in figure 3. In this case the separation bubble appears at Re z 1075, grows, 
then diminishes with growing Re, and disappears at Re z 1920. 

This appearance of a separation vortex bubble is not yet completely understood. 
Brown & Lopez (1990) argued that the ‘generation’ of negative azimuthal vorticity 7 
(7 = av,/az- au,/dr)  is responsible for the appearance of a separation bubble. On this 
basis, the criterion for the vortex breakdown may be related to the change of sign of 
7 near the axis of the cylinder, or to the change of the sign of @ = (a/az) ( r 2 / r 3 ) ,  where 
r= rv,, which may be interpreted as a source term in the equation for 7 

(see also Davidson 1989; Lopez 1994). Change of sign of 7 and @ for the case y = 1.7 
is illustrated in figure 4. It is seen that 4j becomes negative for Re < 300 (figure 4b, c), 
and 7 changes its sign near the axis for Re < 750 (figure 4d, e). On the other hand, the 
patterns of the streamlines at Re = 750, and especially at Re = 300, do not indicate 
significant changes in the meridional flow. 

To obtain more information about the behaviour of 7 and @ with increasing Re we 
carried out additional calculations for the cases y = 1 and 0.5, when no separation 
vortex bubble appears. The corresponding results are plotted in figures 5 and 6. It is 
seen that in these cases 7 and @ also change their signs near the axis (@ changes its sign 
at lower Re than 7 does), but separation vortex bubbles never appear. This means that 
the change of sign of 7 or @ does not necessarily indicate the appearance of a 
recirculation zone in the flow. Thus, the appearance of a recirculation zone in the flow 
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FIGURE 3. Appearance and disappearance of the vortex breakdown, y = 1.5. 20 x 20 functions. 

cannot be completely explained by change of sign of y and @. In fact, since the term 
ry mathematically plays the role of a source term in the kinematic relationship between 
y and 1c., 

the existence of a local maximum and a local maximum of (main meridional vortex 
and separation vortex bubble) necessarily means that the sign of 7 changes. Thus, if at 
a certain value of Re,  Re, say, a separation vortex bubble (local minimum of y9) 
appears in the flow, this means that y is already negative in the vicinity of the bubble 
and changed its sign at a lower Re = Re,, such that R e ,  < Re,. The same may be said 
about the change of sign of @, which is the source term in (27) and changes its sign at 
Re = Re, such that Re, < Re,. This means that the change of signs of 7 and @ may 
be considered as a necessary condition for the appearance of the separation vortex 
bubble (specifically, B-type vortex breakdown, Escudier 1988 ; Delery 1994). 

The following is an attempt at an heuristic explanation of change of signs of 7 and 
@ and appearance of the separation vortex bubble. These features of the flow may be 
understood from the analysis of the isolates of vp, -@, y and @ plotted in figures 4, 5 
and 6. 

By definition 

changes its sign when the sign of the derivative av,/az changes (uV > 0). Analysis of 
figure 4 (a-c) shows that av,/az becomes negative when the meridional flow is intensive 
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FIGURE 4(u-d). For caption see page 13. 
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FIGURE 4(e-h). For caption see facing page. 
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FIGURE 4. Isolines of u , $, 
300, ( d )  500, (e) 750, {f) 1000, (g )  1500, (h) 2000, (i) 2400, ( j )  2700. Negative isolines are dotted. 

and @ for y = 1.7 and Reynolds number equal to (a) 50, (b) 100, (c) 

enough to make the convection of the azimuthal velocity up comparable with its 
diffusion. The meridional flow transports large azimuthal velocity from the edge of the 
lid downwards along the wall and then along the bottom towards the axis. Since the 
rotational momentum rvv has to be preserved, up grows with the decrease of r .  In other 
words one can say that when u, < 0 (motion towards the axis) the Coriolis acceleration 
(-uT,u,Jr) acts in the direction of rotation so as to increase vv. As a result, the 
distribution of uv(z, r*)  along a cylindrical surface r = r* has a local maximum at a 
certain value z = zl, and a local minimum at z = z2,  such that z2 > z1 (figure 4c-f, 
5c-h, 6d-i). This means that (au,/az) ( r* ,  z1 < z < z2) < 0 and consequently 

On the cylindrical surface r = r* the centrifugal acceleration u i / r  also has a local 
maximum at z = zl. This means that at this point the fluid is forced towards the 
cylindrical wall more vigorously than above and below. This leads to a deformation of 
stream surfaces such that they become concave (as seen from inside the curve, figures 
4f, 5f-h, 6h, i). The concave shape of the streamsurfaces for Re > 1000 is a common 
feature of the flows illustrated in figures 4-6. Hence, along with the necessary 
conditions for the vortex breakdown - change of signs of 9 and @ (Brown & Lopez 
1990; Lopez 1994) - and with the obvious sufficient criterion - existence of a 
recirculation zone - there is another possible condition : concave shape of the 
streamsurfaces near the axis of swirling flow. 

Consider now the azimuthal vorticity 7 = au,/az - av,/ar in that region of the rising 
part of the flow (u, = (l /r) ak/ar > 0) where 7 changes sign (see figures 4e, 5f, 6h). The 
derivative au,/ar is negative in this region, because u, reaches its maximal value near the 
axis and decreases with growth of r .  This means that in this region of the flow (in which 

@(r*,z, < z < 2,) < 0. 
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FIGURE 5(a-f). For caption see facing page. 
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FIGURE 5.  Isolines of 2;. &, and @ for y = 1 and Reynolds number equal to (a )  50, (6) 100, 
(c)  150, (d)  200, (e )  250, ( f )  500, (g) 1000, (h) 1500, ( i )  2000, ( j )  2500, ( k )  3000, (0 3151 (= Re,,). 
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FIGURE 6. Isolines of uv, +, and @ for y = 0.5 and Reynolds number equal to (a) 100, (b)  200, 
(c) 300, ( d )  400, (e) 500 (f) 600, (g) 750, (h) 1000, (i) 1500. 

there is no recirculation) the term -aau,/ar in the definition of 9 cannot contribute to 
the change of the sign of vorticity from positive to negative. The other term, av,/az = 
-(l/r)a2@/az2, in the definition of 9 can be negative only if a2$/az2 > 0. This can 
happen only on the part of the surface Y = r* where the function $(Y* ,z )  is concave. 
Thus, a concave form of the streamsurfaces is another necessary condition for the 
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FIGURE 7. Isolines of the stream function $, the centrifugal acceleration v 2 / r ,  and the Coriolis 
acceleration -uru,/r for the case y = 1.7 and Reynolds number equal to (a) TOO, (b) 900, (c) 1100, 
( d )  1220, (e) 1300. 
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u. Y 

FIGURE 8. Isolines of the azimuthal velocity up, stream function +, centrifugal acceleration v ; / r  
and the Coriolis acceleration -u,v , /r  for the case y = 2, Re = 2000. 

appearance of negative azimuthal vorticity near the axis of the cylinder. As was 
previously shown, the concave form of the streamsurfaces is the consequence of the 
local growth of the centrifugal acceleration which, in its turn, is the consequence of the 
convective transport of vv. 

Thus, we have shown that the convective transport of up, results in the non-monotone 
axial distribution of the centrifugal acceleration, which is the main reason for the 
change of signs of 7 and @. Furthermore, we can assume that the appearance of a 
recirculation zone (separation vortex bubble) may be due to the same cause. In fact, 
the swirling flow considered is created by the centrifugal and the Coriolis forces. The 
Coriolis force acts in the azimuthal direction and cannot create any meridional 
recirculation. The centrifugal force acts in the radial direction from the axis towards 
the cylindrical boundary and creates the main meridional recirculation. One may 
assume that if the described local maximum of the centrifugal acceleration (centrifugal 
force) is large enough, this can produce additional weak radial motion directed from 
the axis towards the boundary, which may lead to a meridional recirculation. 

This assumption is illustrated in figures 7 and 8. On the concave part of a streamline 
the radial velocity changes its sign from positive to negative (figure 7b) .  This results in 
the change of sign of the Coriolis acceleration - vT v p / r  (uv is always non-negative). The 
negative Coriolis acceleration increases the azimuthal velocity such that one can see 
weak local maxima and minima in the axial distribution of the centrifugal acceleration 
v:/r (figure 7 d, e). This local decrease and increase of the centrifugal acceleration may 
lead to the appearance of additional radial motion which may result in a recirculation. 
This assumption gains support in figure 8 which shows the case with two separation 
vortex bubbles (y  = 2.5, Re = 2000). In this case the axial distribution of the Coriolis 
acceleration near the axis has three regions of positive and three regions of negative 
values. This results in additional waviness in the axial distribution of the centrifugal 
acceleration which has more local extrema than in the case y = 1.7. 

It should be mentioned that the function @ defined above may be interpreted as the 
derivative of the centrifugal acceleration with respect to z.  One can see from figure 4(g, 
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FIGURE 9. Dependence of the real and imaginary parts of the dominant eigenvalue on the Reynolds 
number, y = 1.5: A, calculation with 16 x 16 functions; 0, 18 x 18 functions; 0, 20 x 20 functions. 

h) that the separation vortex bubble appears in the region where @ changes its sign 
from negative to positive, in other words when the centrifugal force begins to increase 
with the growth of z.  

4.1. Stability of the vortex breakdown 
There have been many claims (see Lugt & Abboud 1987; Tsitverblit 1993) that vortex 
breakdown in the disk-cylinder system is not the result of an instability, but a 
continuous variation of the steady flow that takes place with continuously increasing 
Reynolds number. A direct analysis of the stability of the flow with respect to all 
infinitely small axisymmetric perturbations is presented here for the first time. Another 
question which has not been answered yet is whether the appearance and disappearance 
of the second and the third separation bubbles is a continuous evolution or an 
instability of the single-separation-bubble flow. 

Figures 9-1 1 show the dependence of the real and imaginary parts of the dominant 
eigenvalue of the Jacobian matrix (16) on the Reynolds number for aspect ratios 1.5, 
2, and 2.5. The vertical dashed lines show the boundaries of the appearance and 
disappearance of the separation bubbles. The changes in the slope of " R e )  and the 
discontinuity of &Re) correspond to the switch of the dominant perturbation mode. 
To verify the conclusions, results for different numbers of Galerkin functions are 
presented in the figures. 

Figure 9 corresponds to the case y = 1.5, illustrated in figure 3. With increasing 
Reynolds number the flow before, during, and after the vortex breakdown is stable, as 
indicated by Ar < 0. A switch of the dominant perturbation mode takes place at Re x 
1800, which has no connection with the appearance and disappearance of the vortex 
breakdown at Re x 1075 and Re x 1920, respectively. The oscillatory instability sets in 
at Recr = 2724 after the vortex breakdown disappears. 

In the case y = 2.0 (figure 10) there are four successive dominant modes of the 
perturbations when the Reynolds number increases from 1000 to 3300. The vortex 
breakdown appears at Re z 1452 and disappears at Re x 3019, while between Re x 
1830 and Re x 2283 two separation bubbles exist. The oscillatory instability sets in at 
Recf = 2580 when the vortex breakdown still exists but after disappearance of the 
second separation bubble. The boundaries of existence of the second separation bubble 
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FIGURE 10. Dependence of the real and imaginary parts of the dominant eigenvalue on the 
Reynolds number, y = 2.0: 0, calculation with 20 x 20 functions; 0, 24 x 24 functions. 
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FIGURE 11. Dependence of the real and imaginary parts of the dominant eigenvalue on the 
Reynolds number, y = 2.5: 0, calculation with 24 x 24 functions; 0, 16 x 30 functions. 

are close to the boundaries of the second dominant mode (see figure 10) but do not 
coincide with them. In general, no connection is observed between the changes of the 
dominant perturbation mode or instability of the flow and the appearance and 
disappearance of the first or the second separation bubble. 

In the case y = 2.5 (figure 11) there are also four successive dominant modes of the 
perturbations when the Reynolds number changes from 1100 to 2850. The vortex 
breakdown appears at Re z 1840 and the second separation bubble appears at Re z 
1950. The oscillatory instability sets in at Recr = 2706 when both separation bubbles 
still exist. The vortex breakdown disappears in this case far above Re,,. As in the 
previous case, no connection is observed between a switch of the dominant perturbation 
mode or instability of the flow and the appearance of the first or the second separation 
bubble. 

The results presented in figures 9-1 1 show that the flow considered here is linearly 
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stable with respect to all infinitely small axisymmetric perturbations before and after 
the vortex breakdown appears. This means that the vortex breakdown observed in the 
system is a result of the continuous evolution of the stable stationary flow with 
increasing Reynolds number. Furthermore, the change from a one-separation-bubble 
to a two-separation-bubble flow structure, as well as the reverse change from two- to 
one-separation-bubble flow, are also not connected with any stability phenomena; 
neither is the disappearance of the vortex breakdown. 

4.2. Oscillatory instability onset 
The critical parameters Re,,, wcT, corresponding to the onset of the oscillatory 
instability (which according to our analysis is a result of a Hopf bifurcation), were 
calculated for aspect ratio varying from 1 to 3.5 (figure 12). The results are compared 
with the experimental data of Escudier (1984) (figure 12a) and the numerical results of 
Daube & Sarrensen (1989), Lopez & Perry (1992), Christensen et al. (1993), Tsitverblit 
(1993), and present numerical solution with the finite volume method (figure 12b). 
Note that the previously published results for Re&) are limited to the range 2 6 y d 
2.75, and results for o,,(y) are available only for y = 2 and 2.5. Results of our stability 
analysis for Rec,(y) and w,,(y) cover the whole range from y = 1 (below the appearance 
of a steady vortex breakdown bubble) to y = 3.5 (where only Escudier's experiments 
are available). Several points of wc,(y) for y < 2.5 were calculated with the finite 
volume method (54.4). Calculated points of Re,,(?) and w,,(y) are shown in figure 
12(c). 

One can see from figure 12(b) that for aspect ratio y < 3 the results obtained here 
are in good agreement with all the previous calculations as well as with the present 
time-marching calculations (54.4) except for one single result of Daube & Smensen 
(1989) for y = 2.5. 

For y > 3 no numerical data are available for comparison. Comparison with the 
experimental results of Escudier (1984) shows that the critical Reynolds numbers 
obtained numerically are larger than those obtained in the experiment. On the other 
hand, a switch of the dominant perturbation mode is observed between y = 2.9 and 3 
(figure 12) both in the experiment and in our stability analysis. The reasons of the 
discrepancy between experimental and numerical results will be discussed in 54.3. 

For 1 < y < 1.8 again no numerical or experimental data are available for 
comparison. Since the calculations for this case are easier than for larger aspect ratios, 
and convergence in the case y = 1.5 has been checked (see table 2), these results may 
also be considered as sufficiently accurate. 

The curves Re,,(y) and w,,(y) indicate that there are three different modes of the 
most unstable perturbation. The eigenvector V of the Jacobian matrix (16) 
corresponding to the dominant eigenvalue A(Jmk V,  = A V,, A' = 0) defines the most 
unstable perturbation of the stationary solution of the dynamical system (14). The 
oscillatory instability sets in when the Reynolds number exceeds the value Recr as the 
appearance of oscillations with exponentially growing amplitude. The distribution of 
this amplitude in the flow region coincides, within multiplication by a constant, with 
the distribution of the modulus of the most unstable perturbation (recall that the 
perturbation is a complex function, see (17)). This means that the patterns of the 
absolute value of the perturbation describe the amplitude of the oscillatory state near 
the threshold of instability, and may be used for the analysis of the physical causes of 
the instability. 

Perturbations of the meridional stream function $ and the q-component of the 
momentum = yop were chosen for plotting since they were found to give the best 
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FIGURE 12. Stability diagram corresponding to the onset of the oscillatory instability. Critical 
Reynolds number (left) and critical cycle frequency (right) versus aspect ratio (a)  Comparison of the 
present results with the experiment of Escudier (1984); (b)  comparison of the present results with the 
independent calculations ; (c) present results obtained with a different discretization. 
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representation of the changes in the perturbation with varying Re and y .  Isolines of the 
absolute values of the perturbation are plotted in figure 13. The absolute value of 
perturbations (amplitude of the most unstable mode) is chosen for plotting because this 
property does not depend on time and phase. It may be easily used for comparison of 
results obtained with different spatial discretizations as well as with different numerical 
approaches. At the same time the isolines plotted in figure 13 describe the distribution 
of the amplitude of the oscillations of II. and AT, (see (17)). 

Note that there is an abrupt change in the spatial structure of the perturbation 
between y = 1.72 and 1.73, and between y = 2.91 and 2.93 corresponding to the 
discontinuities in the slopes of the neutral curve in figure 12. 

The most noticeable change is observed in the perturbation of the stream function. 
In the case of smaller aspect ratio (figure 13a) it occurs as the sudden appearance of 
an additional saddle point near the vertical rigid wall of the cylinder, and the 
appearance of a weak local maximum of the perturbation near the stationary bottom. 
In the case of larger aspect ratio (figure 13 6 )  the change is even more noticeable and 
manifests itself as the appearance of the additional maximum in the central part of the 
cylinder together with an additional saddle point near the vertical wall. 

Changes in the perturbation of AT are noticeable only in the part of the cylinder 
located between the axis and the rigid cylindrical wall. Perturbation in this region is 
relatively weak in comparison with the perturbation located near the cylindrical wall 
and the bottom (figure 13). The maximum values, as well as the maximum gradient of 
the perturbation of A?’p, are located near the vertical wall and the stationary bottom of 
the cylinder. This feature of the perturbation of A9 does not change with the change 
of the aspect ratio and does not depend on the existence of the separation vortex 
bubble. The existence of this almost unchanging feature of the perturbation allows us 
to suppose that the reason for the oscillatory instability is the same for all the values 
of aspect ratio considered, and is connected with the disturbances of rotation near the 
vertical wall, the top, and the bottom of the cylinder. It should be mentioned that this 
possible reason for the onset of oscillatory instability is not connected with the 
existence of a separation vortex bubble in the flow. Moreover, perturbations of the 
rotational and meridional components of the flow, as well as gradients of the 
perturbations, are weak near the axis where the vortex breakdown (whichever way it 
is defined) takes place. This allows the conclusion that the oscillatory instability is not 
caused by the vortex breakdown. 

4.3. Weakly nonlinear analysis of Hopf bifurcation 
The application of the asymptotic expansion (17) requires the calculation of two 
parameters ,u and 7 (figure 14). Since the values of ,u and 7 depend on the scaling of the 
eigenvectors V and U (as may be seen from (17)-(23)), these parameters cannot be 
directly compared for different values of y and different spatial discretizations. It was 
found that scaling of the coefficients ,u and 7 by the coefficient p from the expansion 
of the Floquet exponent (24) allows us to obtain smooth functions for p(y) and 7(y)  
and to compare results calculated with different numbers of basis functions. 

The sign of ,u shows the direction of the Hopf bifurcation corresponding to the 
neutral curve (figure 12a). The bifurcation is found to be supercritical for all values of 
the aspect ratio (figure 14a). The supercritical character of the Hopf bifurcation 
considered was postulated previously on the basis of a straightforward simulation of 
the flow by Daube & Ssrensen (1989) for y = 2 and by Tsitverblit (1993) for y = 2.5. 
The present results prove the supercritical character of the axisymmetric Hopf 
bifurcation for the whole interval 1 d y ,< 3.5. 
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of the moment of the angular velocity. Abrupt change of the most unstable perturbation mode takes 
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Since the axisymmetric Hopf bifurcation is supercritical for all values of the aspect 
ratio, steady flows below the neutral curve plotted in figure 12 are stable with respect 
to all infinitely small axisymmetric perturbations. This means that the discrepancy 
between the predicted and the experimental critical values of the Reynolds number for 
large aspect ratios (y  > 3 ,  figure 12a) is due to three-dimensional effects and cannot be 
explained by a subcritical axisymmetric bifurcation. 

According to Escudier’s experiments the results of the oscillatory instability for 
y > 3 is a precession of the separation bubble around the axis, i.e. a transition from an 
axisymmetric to an asymmetric flow. The present numerical analysis does not include 
asymmetric perturbations and cannot describe such a transition. On the other hand, 
results of linear and weakly nonlinear axisymmetric stability analyses completely 
exclude the possibility of explaining the experimental observations in terms of an 
axisymmetric instability. However, both experimental and numerical neutral curves 
have breaks at approximately the same value of the aspect ratio, y GZ 3.  This means that 
there are two possible routes for the transition from an axisymmetric to an asymmetric 
state. The first is a switch of the most unstable mode corresponding to an instability 
of the steady state : an asymmetric perturbation mode becomes more unstable than an 
axisymmetric mode when the aspect ratio exceeds the value of approximately 3 .  This 
switch of modes may be found by an analysis of the stability of the initial axisymmetric 
steady flow with respect to asymmetric perturbations and means that the closeness of 
the breaks in the slopes of the experimental and numerical axisymmetric neutral curves 
is fortuitous. 

Another possibility is the following : the axisymmetric oscillatory flow resulting from 
a supercritical axisymmetric Hopf bifurcation is unstable with respect to asymmetric 
perturbations (note that according to the slightly supercritical analysis the axisym- 
metric limit cycle is stable with respect to axisymmetric perturbations). If the latter 
instability is subcritical, the final asymmetric oscillatory flow may be observed below 
the neutral curve corresponding to the linear axisymmetric instability. In this case an 
investigation of the stability of axisymmetric oscillatory flow is necessary for a correct 
description of the transition. 

The value of 7 which describes the deviation of the period of oscillations from the 
result of the linear stability analysis is plotted in figure 14(b). As one can see, 7 is 
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FIGURE 15. Instantaneous streamlines of the meridional flow plotted for equal time intervals 0.1T 
covering the complete period. y = 2.5, Re = 2765, Re- Rec, M 59, 2 zz 5 x Calculation with 
38 x 38 basis functions (left) and with 150 x 150 stretched grid (right). 

negative for all values of the aspect ratio, which means that the real period of 
oscillations is slightly less than that obtained by the linear stability analysis. The 
deviation of the period from the result of linear analysis may be estimated as 
(7/p) (Re- Re,,). The ratio 7 / p  does not exceed and the critical period 2x/wCr is 
always more than 10 (figure 12). According to the test calculations, the asymptotic 
expansion (17) is valid for (Re- Re,,) of order 100 or less, so that the deviation of the 
period from its critical value is relatively small. 

The instantaneous streamlines of a slightly supercritical flow for y = 2.5, Re = 2765 
are shown in figure 15. The parameters correspond to the result of the direct numerical 
solution of the non-steady problem presented in figure 6(a) of Lopez (1990). It is 
noteworthy that the results of linear stability analysis in this case are close to those 
obtained by Lopez (1990) and Lopez & Perry (1992) (see figure 12b). Moreover, the 
snapshots of the asymptotically approximated stream function are very close to those 
obtained by numerical solution of the full unsteady Navier-Stokes equations (figure 
15). This result reproduces the coupling and decoupling of two separation bubbles 
during one period of oscillations as reported by Lopez (1990). 

Other interesting features of supercritical flows were observed for smaller values of 
the aspect ratio, y < 1.75, when the oscillatory instability takes place after the 
separation vortex bubble disappears (Escudier 1984). Thus, for y = 1.5 the critical 
Reynolds number is approximately Recr M 2724 and the steady flow at Re = Ree, does 
not contain a separation bubble. With a small increase of the Reynolds number above 
Recr weak pulsations of the main meridional vortex are observed. With further increase 
of the Reynolds number a weak pulsating separation bubble appears at Re E 2760. The 
size of the separation bubble and the fraction of the period during which it exists 
increase with growing Reynolds number. This is illustrated in figure 16 for Re = 2800 
when the pulsating separation bubble exists during approximately 3/ 10 of the period. 
Note that in the case of y = 1.5 the steady separation vortex bubble disappears at 
Re E 1900 (figure 3), and the appearance of a pulsating separation bubble at much 
larger Reynolds number Re M 2760 is quite unexpected. The result is obtained as an 
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FIGURE 16. As figure 15 but for y = 1.5, Re = 2800, Re- Rec, z 76, 2 z 2 x 

asymptotic approximation and is verified by the numerical solution of the unsteady 
Navier-Stokes equation (figure 16). 

Furthermore, in the case of y = 1.25 the slightly supercritical flow at Re = 3050 
contains two distinct pulsating separation bubbles (figure 17). The critical Reynolds 
number in this case is approximately RecT z 2871, so that the supercriticality in this 
case is equal to 179. With the growth of the Reynolds number the size of both 
oscillating bubbles increases (figure 18, Re = 3100). During a period of oscillation both 
separation vortex bubbles increase and decrease in axial and radial directions but do 
not coincide with each other (figures 17 and 18). 

For even smaller aspect ratio, y = 1, only one oscillating separation bubble appears 
at approximately Re z 3500. The critical Reynolds number for y = 1 is Recr z 3151, 
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FIGURE 17. As figure 15 but for y = 1.25, Re = 3050, Re-Recr % 179, 2 = 3 x 

so that in this case a noticeably larger supercriticality is necessary for the appearance 
of the oscillating bubble. Unlike the previous cases the oscillating bubble appears in the 
upper but not in the lower part of the flow (figure 19, Re = 3600). 

To obtain a similar effect for y < 1 larger supercriticalities are required, but since the 
formal asymptotic expansion (17) is not valid for larger supercriticalities such results 
cannot be obtained within the present framework. 

The appearance of the oscillating separation bubble in flows with relatively small 
aspect ratio (y < 1.75) takes place in the region of parameters where the stationary 
solution of the problem (below the critical Reynolds number as well as above it) does 
not predict a separation vortex bubble. The oscillating separation bubble appears as a 
result of the continuously developing oscillatory instability when the supercriticality is 
sufficiently large. Since the phenomenon as a whole is very similar to vortex breakdown 
in stationary flows it may be interpreted as ‘oscillatory vortex breakdown’. It should 
be noticed that a separation bubble was reported by Lugt & Haussling (1973) for the 
almost rigid-body rotation of a counter-rotating disk-cylinder system with aspect ratio 
1. This bubble occurred only temporarily and vanished when the steady state was 
reached. It is possible that this damped vortex breakdown is caused by an oscillatory 
perturbation mode. 

4.4. Straightforward simulation of slightly supercritical flows 

A numerical solution of the unsteady governing equations (1)-(5) was carried out to 
estimate the upper bound of the supercriticality below which the asymptotic expansions 
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FIGURE 18. As figure 15 but for y = 1.25, Re = 3100, Re-Re,,  E 229. t.' = 4 x  
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FIGURE 19. As figure 15 but for y = 1 ,  Re = 3600, Re- Reer = 449, = 2 x 



30 A. Yu. Gelfgat, P. Z .  Bar-Yoseph and A.  Solan 

- 
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(17) provide an approximation of the limit cycle which may be compared with the 
solution of the complete problem. The numerical solution was carried out using the 
finite volume method based on the SIMPLE algorithm (Patankar & Spalding 1972) and 
three levels approximation of the time derivative (Janssen, Henkes & Hoogendoorn 
1993). The same stretching of the grid as in Tsitverblit (1993) was used. 

It was found that the frequency of oscillations is already correctly approximated on 
the 75x75 nodes grid (figure 12b). However, to obtain good agreement of the 
instantaneous streamlines calculated by two different numerical approaches a much 
finer grid is necessary. For example, in the case y = 2.5, Re = 2765 considered by 
Lopez (1990) and Lopez & Perry (1992) the supercriticality Re- Recr is about 59 and 
c2 in the expansion (17) is approximately 5 x A grid of 150 x 150 nodes was 
necessary to obtain a good agreement between oscillatory solutions (figure 15) even for 
such small supercriticality. 

Further calculations with 150 x 150 grid nodes allowed the confirmation of the 
existence of the oscillating separation vortex bubble in the case y = 1.5, Re = 2800 
(figure 16). However for larger supercriticalities (like those illustrated in figures 17-19) 
it was found that the asymptotic expansion (17) overestimates the amplitude of the 
oscillations. On the other hand, patterns of the oscillatory flows similar to those plotted 
in figures 17-19 may be obtained for larger values of Re. Thus, in the case y = 1.25, 
Re = 3050 there are two distinct separation bubbles in the asymptotic solution (figure 
17) but only the lower separation bubble is observed in the solution obtained with the 
finite volume method. The upper separation bubble appears in the finite volume 
solution after increase of the Reynolds number up to Re = 3100 (figure 20), but the 
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amplitude of the oscillations is smaller than predicted by the asymptotic expansion 
(figure 18). It may be concluded that in this case the oscillatory flow still can be 
described as superposition of the stationary solution and the perturbation, but higher- 
order terms in the asymptotic expansion (1 7) become significant. Nevertheless, the 
direct numerical simulation performed confirms a qualitative conclusion about the 
existence of one (figures 16 and 19) or two (figures 17, 18 and 20) pulsating separation 
vortex bubbles in slightly supercritical flows for y < 1.75 which was done on the basis 
of weakly nonlinear analysis of the Hopf bifurcation. 

5.  Concluding remarks 
It is shown that the change of signs of the azimuthal vorticity 7 and the function 

@ = (a/&) (T2/r3) is a necessary, but not sufficient, condition for B-type vortex 
breakdown. The change in the signs of 7 and @ is caused by the non-monotone axial 
distribution of the centrifugal force which is a consequence of the convection of 
azimuthal velocity and action of the Coriolis force. It is our argument that the local 
maximum of the centrifugal force is the main reason for the appearance of recirculation 
zones in a swirling flow. It is shown that the concave shape of the streamsurfaces of a 
confined swirling flow may be considered as an additional property of vortex 
breakdown. 

The appearance and disappearance of the vortex breakdown in steady states of the 
confined swirling flow considered here are not connected with the stability of the flow. 
The same may be said about the appearance and the disappearance of the second and 
third separation bubbles. The vortex breakdown appears and develops as a continuous 
change of the meridional flow with the variation of the Reynolds number. 

For aspect ratio 1 < y < 3 the transition from a steady to an oscillatory flow regime 
takes place as a result of an axisymmetric supercritical Hopf bifurcation, which is 
caused by three different perturbation modes that successively replace each other with 
the growth of the aspect ratio. The onset of the oscillatory instability is not caused by 
and is not connected with the existence of the vortex breakdown in the flow. 

3 the experimentally observed oscillatory instability cannot be described by 
the axisymmetric stability analysis. This instability is caused by asymmetric 
perturbations of an axisymmetric flow. It is unclear whether it is an instability of 
stationary or oscillatory axisymmetric flow. 

The weakly nonlinear analysis of the numerically obtained axisymmetric Hopf 
bifurcation shows that the bifurcation is supercritical for all values of the aspect ratio 
considered. The asymptotic approximation of the supercritical oscillatory flow in the 
case y 6 1.75 showed that at a certain finite supercriticality the evolution of the 
oscillatory instability may result in an oscillatory vortex breakdown, i.e. one or two 
oscillating separation bubbles may arise as a result of the instability in cases when no 
separation bubble is observed in steady sub- and supercritical states. This conclusion 
was proven by the direct numerical simulation of slightly supercritical flows. 

For y 

This research was supported by the Center for Absorption in Science, Ministry of 
Immigrant Absorption, State of Israel (to A. Gelfgat), and by the Y .  Winograd Chair 
of Fluid Mechanics and Heat Transfer at Technion. 



32 A. Yu. Gelfgat, P. 2. Bar-Yoseph and A. Solan 

Appendix 
The convergence of the stationary solutions is presented in table 1 for the case 

y = 2.5, Re = 2000 in terms of the following flow features: the value and location 
of the maximum and minimum of the stream function and the azimuthal vorticity ~ 

value and location of the maximum value of the z- and pcomponents of velocity at 
the cross-section z = y/2 - umas(rmax, z = y/2) and wrnaz(rmaz, z = y/2); the value and 
location of the maximum of the r-component of velocity at the cross-section 
r = 0.5 - urna,(r = 0.5, zrnaz).  In all the calculations the values of K, and K, were 
taken as K, = 100 and K, = 30. With K, = 100 the approximation of the boundary 
condition Q ( r , z  = y )  = r in the interval 0 < r < 0.999 is of O(10-5). The value K, = 30 
provides Qi = 0 in (14) corresponding to dij for all M ,  < 30. 

The test calculations were carried out with the number of basis functions in the series 
(6) N ,  x N ,  = M ,  x M ,  varying from 22 x 22 to 38 x 38. To verify the results obtained 
the steady problem was solved numerically by a specially developed second-order finite 
volume method using staggered grids with 60 x 60, 100 x 100,200 x 200 and 300 x 300 
nodes. To condense nodes near the boundaries we used the same stretching as 
Tsitverblit (1993). The corresponding results are shown in table 1 .  

The comparison of the steady solutions obtained with the Galerkin and the finite 
volume methods shows that 26 x 26 basis function suffice to yield a reasonable result. 
The steady solution converges rapidly with the increase of the number of Galerkin 
modes. The steady solution obtained with 38 x 38 basis functions is in good agreement 
with the solution obtained on the 300 x 300 grid. All the parameters, except the values 
of lCrrnjn,  coincide at least up to the second digit. The values of are very small and 
sensitive to discretization, such that even the result obtained with 300 x 300 nodes 
cannot be considered as accurate enough. 

The convergence of critical Reynolds numbers and critical frequencies for y = 1.5, 
2.5, and 3.25 is shown in table 2 for numbers of the basis functions increasing from 
24 x 24 to 38 x 38. It is seen from the table that the stability analysis for larger values 
of the aspect ratio requires larger numbers of Galerkin modes. Thus, the value of Recr 
in the case y = 1.5 may be obtained with four correct digits using 26 x 26 basis 
functions, while in the case y = 3.25 the second correct digit may be obtained only with 
28 x 28 basis functions. The convergence of w,, is much faster, such that in all cases 
three correct digits of w,, are obtained with 24 x 24 basis functions. The calculated 
values of Re,, and w,, are compared with the experimental results of Escudier (1984) 
in figure 12(a) and with the independent calculations in figure 12(b). The convergence 
of the calculated Re,, and w,, is illustrated in figure 12(c). 

The parameters p and 7 of the expansions (1 7) cannot be compared directly because 
they depend on the norm of the dominant eigenvector. For comparison of the weakly 
nonlinear expansions of the limit cycle obtained with different number of basis 
functions these parameters were scaled by the coefficient in the expansion of the 
Floquet exponent (24). The convergence of the parameters p and 7 is determined 
mainly by the convergence of the derivative of the dominant eigenvalue and by the 
convergence of the corresponding left and right eigenvectors (equations (1 8)-(23)). It 
is seen from table 2 that not more than two correct digits in the ratios p / p  and r//3 
could be obtained with the numbers of basis functions used. 

The comparison of the instantaneous streamlines of a supercritical flow with the 
results of the direct numerical simulation is shown in figures 15 and 16. To verify the 
prediction of asymptotic expansion (1 7) we also tried to calculate the streaklines of the 

1Crmaz(rrnaz, zmaz)  and lkmin(rmtn9 Zmtn) ; vrnas(rmaz, zmaz)  and qmin(rmin3 Zmin) I the 
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FIGURE 21. Unsteady streaklines calculated for y = 2.5, Re = 2765. 

supercritical flow for the same parameters as in the work of Lopez & Perry (1992), 
y = 2.5, Re = 2765. The result is shown in figure 21. It should be noted that the 
asymptotic expansion (1 7) may contain a rather large residual. Because of this it should 
not be used for integration over very long periods of time, since at each time step 
numerical error may accumulate. Nevertheless, integrating over a time corresponding 
to several tens of periods (which is not very large) allowed us to obtain a picture of 
streaklines (figure 21) with the main features very similar to those obtained by Lopez 
& Perry (1992). 
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